Magnetic contrast agents for optical coherence tomography
نویسندگان
چکیده
The magneto-mechanical effect is exploited as a means of producing background-free contrast in optical coherence tomography (OCT). Contrast agents consisting of iron-oxide particles and protein microspheres encapsulating colloidal iron-oxide have a sufficiently high magnetic susceptibility to be detected by modulation of a magnetic field gradient using a small solenoid coil. The externally-applied magnetic field mechanically rotates or translates these highly scattering contrast agents within the sample at the modulation frequency, which is subsequently detected as amplitude modulation of the OCT signal. Pairs of sequential axial scans (A-lines) are acquired with the magnetic field on and off, allowing one to build up a pair of images corresponding to the "on" and "off" states of the magnetic field. These image pairs are differenced to look for magnetic-specific effects, allowing one to distinguish the magnetic contrast agents from non-magnetic structures within the sample with a signal-to-background ratio of ~23dB. This technique has the potential to be very powerful when coupled with targeting for in vivo molecular imaging. To evaluate this potential we demonstrate in vitro imaging of magnetically-labeled macrophage cells embedded in a 3D tissue phantom, in vitro tissue doped with contrast agents, and in vivo imaging of Xenopus laevis (African frog) tadpoles.
منابع مشابه
Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...
متن کاملDual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes.
We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T(2) MRI was achieved with a 4.7 T animal system. Photothermal O...
متن کاملPhase-resolved spectral-domain magnetomotive optical coherence tomography
We advance the magnetomotive-optical coherence tomography (MM-OCT) technique for detecting displacements of magnetic nanoparticles embedded in tissue-like phantoms by using apmplitude and phase-resolved methods with spectral-domain optical coherence tomography (SD-OCT). The magnetomotion is triggered by the external, noninvasive application of a magnetic field. We show that both amplitude and p...
متن کاملMagnetomotive molecular nanoprobes.
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high spec...
متن کاملEngineered microsphere contrast agents for optical coherence tomography.
Contrast agents are utilized in virtually every imaging modality to enhance diagnostic capabilities. We introduce a novel class of optical contrast agent, namely, encapsulating microspheres, that are based not on fluorescence but on scattering nanoparticles within the shell or core. The agents are suitable for reflection- or scattering-based techniques such as optical coherence tomography, ligh...
متن کامل